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Logistic Regression: From Art to Science
Dimitris Bertsimas and Angela King

Abstract. A high quality logistic regression model contains various desir-
able properties: predictive power, interpretability, significance, robustness
to error in data and sparsity, among others. To achieve these competing
goals, modelers incorporate these properties iteratively as they hone in on
a final model. In the period 1991–2015, algorithmic advances in Mixed-
Integer Linear Optimization (MILO) coupled with hardware improvements
have resulted in an astonishing 450 billion factor speedup in solving MILO
problems. Motivated by this speedup, we propose modeling logistic regres-
sion problems algorithmically with a mixed integer nonlinear optimization
(MINLO) approach in order to explicitly incorporate these properties in a
joint, rather than sequential, fashion. The resulting MINLO is flexible and
can be adjusted based on the needs of the modeler. Using both real and syn-
thetic data, we demonstrate that the overall approach is generally applicable
and provides high quality solutions in realistic timelines as well as a guaran-
tee of suboptimality. When the MINLO is infeasible, we obtain a guarantee
that imposing distinct statistical properties is simply not feasible.

Key words and phrases: Logistic regression, computational statistics,
mixed integer nonlinear optimization.

1. INTRODUCTION

Logistic regression is a common classification
method when the response variable is binary. Given
a response vector yn×1, a model matrix X = [X′

1, . . . ,

X′
n] ∈R

n×p , and regression coefficients β ∈ R
p×1, the

logistic regression model assumes log(P (yi = 1 | xi )/

P (yi = 0 | xi )) = β ′xi . Logistic regression minimizes
the negative log-likelihood of the data

(1) min
β

f (β),

where f (β) = ∑n
i=1 −yi(β

′xi ) + log(1 + exp(β ′xi )).
The logistic function was originally invented in the

nineteenth century to model population growth. In the
early twentieth century, it gained support as a tool for
bioassay, and over the course of the twentieth century
its applications grew to span many fields (see [16] for
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a thorough overview). The simplicity and effectiveness
of the logistic regression model have made it an essen-
tial part of every statistician’s toolkit today. The careful
modeler often spends substantial time and effort build-
ing a high quality logistic regression model from the
raw data. It is rare for the modeler to build a single
model. Rather, to produce an interpretable model that
successfully decouples signal from noise, the modeler
usually embarks upon an iterative process of model se-
lection and refinement. Throughout this process, she
must keep in mind a set of properties that a high-quality
logistic regression model will exhibit: among others,
it should be parsimonious but generalizable, free of
excessive multicollinearity, not overly determined by
individual outliers, and of course, must cohere with
the application at hand. Traditionally, balancing these
competing goals to create a successful, high-quality lo-
gistic regression model has been more of an art than a
science. In this paper, we propose an algorithmic ap-
proach to jointly satisfying such objectives based on
optimization. We will address the special case of best
subset logistic regression extending [8] that focuses on
best subset linear regression, and show that we can
use our approach to find subsets of variables when the
number of variables is over 30,000.

367

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/16-STS602
http://www.imstat.org
mailto:dbertsim@mit.edu
mailto:aking10@mit.edu


368 D. BERTSIMAS AND A. KING

1.1 The Aspirations of the Work

In regression modeling, the modeler accounts for de-
sirable characteristics one at a time through a course of
model experimentation and refitting. The final model
produced may contain the desired properties, but there
is no guarantee of this. Moreover, there is no guarantee
that the final model is indeed the best possible model
for satisfying the modeler’s original goals. The inten-
tion of this work is to lay out an algorithmic frame-
work for building high quality logistic regression mod-
els based on optimization which account for all of the
modeler’s original goals simultaneously. The core of
this framework is a mixed integer nonlinear optimiza-
tion (MINLO) problem, and we develop a method to
solve this MINLO in practical time frames. If it is not
possible to jointly achieve the modeler’s goals, our al-
gorithm gives a guarantee that this is indeed infeasi-
ble. If it is possible, the algorithm outputs a set of high
quality models incorporating the desired properties.

1.2 Current Practice

The challenge of building a high quality logistic re-
gression model lies in the fact that the modeler must
artfully manage various competing objectives. Differ-
ent modelers may approach the same data with the
same objectives, but because of decisions they make
along the model-building process, may wind up with
very different final models.

We consulted several logistic regression textbooks
([32, 45, 30] and [19]) to better understand how mod-
elers formally learn how to build logistic regression
models. This textbook review indicated that although
authors try to make readers aware of the various com-
peting objectives, they rarely give direction on how to
consider these objectives as a whole when construct-
ing the best possible model. To wit, [45] discusses se-
lection criteria, stepwise approaches, and testing for

multicollinearity and nonlinear transformations. How-
ever, [45] notes that “Using logistic regression diag-
nostics. . . is more art than science.”

Hosmer and Lemeshow [32] outlines a methodol-
ogy for fitting logistic regression models that they call
“purposeful selection.” In our experience, many model-
ers follow this iterative approach in practice. For com-
pleteness, we include a summary of purposeful selec-
tion in the supplemental file [7]. For datasets for which
purposeful selection can be done manually, this is a
laborious but necessary task of building and rebuild-
ing the logistic regression model. With our computa-
tional approach, we aim to eliminate this tedious step
and produce a set of high quality models. Moreover,
our computational approach extends to the high dimen-
sional regime and is not limited to the case where there
is a low number of potential covariates.

1.3 Contribution and Structure of the Paper

In this paper, we propose a mixed integer nonlin-
ear optimization (MINLO) approach to model a variety
of desired properties in statistical models. In Table 1,
we summarize the properties we model and how they
are built into the MINLO model in Section 2. Our ap-
proach provides the only methodology we are aware
of to construct models that impose statistical prop-
erties in logistic regression models simultaneously.
The MINLO problem is challenging to solve from an
optimization perspective and we propose a tailored
methodology to solve it based on modern optimiza-
tion techniques which is faster than existing MINLO
software. We combine outer approximation techniques
in mixed integer nonlinear optimization with dynamic
constraint generation, a feature of modern optimization
solvers. To the best of our knowledge, we are the first to
integrate the optimization-based technique of dynamic
constraint generation, which automatically generates

TABLE 1
Desirable properties of a logistic regression model and how they are built into the model

Property Paper section MINLO model

General sparsity 2.1 Constraint (7d)
Group sparsity 2.2 Constraint (7e)
Limited pairwise multicollinearity 2.2 Constraint (7f)
Nonlinear transformations 2.2 Constraint (7g)
Robustness 2.3 Objective (7b)
Modeler expertise 2.4 Constraint (7h)
Statistical significance 2.5 Constraint (7i)
Low global multicollinearity 2.6 Constraint (7i)
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and add constraints to the MINLO at certain points in
the solving process, into statistical modeling. This al-
lows us to take full advantage of the speedups in mixed
integer linear optimization (MILO). We also consider
the well-studied special case where the only property
we would like to impose is sparsity: this is known as
the best subset problem in logistic regression. In this
case, we can incorporate a discrete extension of first-
order methods in continuous optimization into our tai-
lored method for solving the MINLO.

Using both real and synthetic data, we demon-
strate that the overall approach is generally applicable,
tractable in the sense of providing solutions in realistic
timelines, and provides a guarantee of suboptimality as
it is based on a MINLO model. Specifically, when the
MINLO is infeasible we obtain a guarantee that impos-
ing distinct statistical properties is simply not feasible.

The paper is structured as follows. We begin in Sec-
tion 2, with a discussion of the desirable statistical
properties we want the regression model to have. In
Section 3, we explain the algorithmic framework which
achieves these properties, including the formulation of
the MINLO model. In Section 4, we give a brief review
of MINLO and explain our tailored method for solving
the MINLO model. In Section 5, we provide evidence
of our algorithm’s abilities using a wide variety of real
and synthetic datasets. We conclude in Section 6.

2. DESIRABLE PROPERTIES

We outline desirable characteristics of a logistic re-
gression model, and compare our MINLO approach to
achieving these properties in logistic regression models
with existing approaches in the literature.

2.1 General Sparsity

When the number of potential features is large, we
often wish to identify a critical subset of features which
are primarily responsible for producing the response.
This leads to more interpretable models, and aids pre-
diction accuracy by eliminating unnecessary variables
to increase the model’s ability to generalize.

Statistically incorporating sparsity into regression
models has received a great deal of attention in the con-
text of the best subset problem, which is the problem of
determining the best k-feature fit in a regression model:

(2) min
β

f (β) subject to ‖β‖0 ≤ k,

where the �0 (pseudo)norm of a vector β counts the
number of nonzeros in β and is given by ‖β‖0 =∑p

i=1 1(βi �= 0).

Furnival and Wilson [28] proposed solving Prob-
lem (2) via an implicit enumeration algorithm when
f (β) is the linear regression objective function. Hos-
mer et al. [31] showed that software implementing the
algorithm of [28] can be used directly in the case of
logistic regression as well. However, the algorithm of
[28] does not scale past p = 30, leading much of the
statistics community to view solving Problem (2) as
generally intractable.

The familiar Lasso �1-penalty approach,

(3)
min

β

n∑

i=1

−yi

(
β ′xi

)

+ log
(
1 + exp

(
β ′xi

)) + λ‖β‖1,

has been proposed in the literature. Friedman et al.
[27] and [36, 37, 39] suggested various methods to
solve (3). Alternative approaches based on a prior to
encourage sparsity have been proposed in [24, 52] and
[38].

Satoa [48] is the only work that solves a penalized
version of (2) via mixed integer optimization (MIO).
They approximate the log likelihood with a piecewise
linear function and solve the resulting linear MIO with
standard solvers. They suggest solving the full MINLO
rather than a linear approximation as a direction of fu-
ture research. In this paper, we will directly consider
the MINLO.

2.2 Selective Sparsity

We use the term “selective sparsity” to refer to set-
tings where we would like to constrain the joint inclu-
sion of subsets of independent variables: group spar-
sity, pairwise multicollinearity and nonlinear transfor-
mations.

Group sparsity. Some applications exhibit a block
or group-sparse structure, with groups of indepen-
dent variables whose coefficients are either all zero
or all nonzero. Categorical variables, when expressed
as a collection of dummy variables, form a natural
group structure. Clear group formations also appear
in compressed sensing [23], microarray analysis [42]
and other applications. Group sparsity has been highly
studied in recent years (e.g., see [1, 53, 54]). Group
Lasso, first proposed for linear regression in [53], has
analogously been proposed for logistic regression [35,
44, 50].

Limited pairwise multicollinearity. A near-linear re-
lationship between independent variables obfuscates
the true contribution of each feature to the response and
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leads to unstable parameter estimates. To avoid these
issues and produce interpretable models, [51] recom-
mends that “independent variables with a pairwise cor-
relation more than 0.70 should not be included in mul-
tiple regression analysis.” This can be modeled as se-
lective sparsity; see Constraint (7f).

Detecting appropriate nonlinear transformations.
Nonlinear transformations of independent variables
may be able to explain the variance in the dependent
variable much better than the original measured vari-
able could. Such transformations are detected through
graphical examination and trial and error, or automat-
ically by the Box–Tidwell procedure ([12] for linear
regression and [32, 45] for logistic regression).

2.3 Robustness

Robustness in logistic regression has mainly focused
on developing alternative objectives to maximum like-
lihood which are robust against outliers. Carroll and
Pederson [14] suggested using a weighted maximum
likelihood estimator. [46, 10] and [17] considered ro-
bust M-estimates. See [43] for an overview.

Robust optimization directly addresses errors in the
data by considering uncertainty sets for the data and
calculates solutions that are immune to worst-case un-
certainty under these sets (see [3] and [5]). For the lo-
gistic regression problem with data (y,X), the data as-
sociated with the independent variables have error �X
that belong to a given uncertainty set U . For example,

U = {
�X ∈ R

n×p | ‖�xi‖α ≤ �
}
,

where ‖x‖α = (
∑n

l=1 xα
l )1/α . The robust logistic re-

gression problem is then

(4)
min

β
max

�X∈U

n∑

i=1

−yi

(
β ′(xi + �xi )

)

+ log
(
1 + exp

(
β ′(xi + �xi )

))
.

The key result is as follows.

THEOREM 2.1 ([6]). Problem (4) is equivalent to

(5)
min

β

n∑

i=1

−yi

(
β ′xi + (−1)yi�‖β‖ α

α−1

)

+ log
(
1 + exp

(
β ′xi + (−1)yi�‖β‖ α

α−1

))
.

Note that this differs from the recent work of [49]
which considers robustness in logistic regression in a
distributional sense.

2.4 Modeler Expertise

There may be cases where the modeler has domain
knowledge about the features in the model. In that case,
she might wish to specify that certain independent vari-
ables must be included in the final logistic regression
model, due to a known correlation with the response.
This can be incorporated directly into the model build-
ing process by adding Constraint (7h) to Problem (7).

2.5 Statistical Significance

Statistical significance of logistic regression mod-
els is typically estimated via a likelihood ratio test,
Wald’s test, or a Lagrange multiplier test (also known
as score test) [32]. These three tests are asymptotically
equivalent, but since we consider a robustified and con-
strained version of maximum likelihood, none of these
tests is directly applicable to our case. We will main-
tain an assumption-free approach by using bootstrap-
ping methods, introduced in [22], in order to estimate
confidence intervals for each feature in the model se-
lected by our algorithm.

2.6 Low Global Multicollinearity

Ryan in [47] reports an example with all pairwise
correlations ≤ 0.57 but a perfect linear relationship.
Global multicollinearity can be measured by checking
the condition number of the correlation matrix result-
ing from the submatrix of included variables. A con-
dition number greater than 15 is usually taken as ev-
idence of multicollinearity and a condition number
greater than 30 is usually an instance of severe mul-
ticollinearity [15].

3. THE OPTIMIZATION FRAMEWORK

In this section, we describe our three-stage iterative
procedure for producing high quality regression mod-
els. The stages are: (1) preprocessing, (2) building and
solving the MINLO model and (3) generating any ad-
ditional constraints and repeating Stage 2.

3.1 Stage 1: Preprocessing

The dataset is split randomly 50%/25%/25% into a
training, validation and test set. Each set is standard-
ized so that the training set has columns with zero mean
and unit �2-norm. The modeler may also choose to set
the number of robustification parameters � to be tested
in the model (the default is 5), and ρ, the maximum
pairwise correlation that will be allowed between in-
cluded variables (the default is 0.7). The algorithm then
generates the correlation matrix for the training data
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and identifies variables which are correlated in abso-
lute value beyond ρ, and calls this set of pairs of vari-
ables HC, for highly correlated variables. The modeler
specifies any variables which are categorical, and the
algorithm expresses these as groups of dummy vari-
ables. At this point, the modeler can also specify any
additional group-sparsity structure. We denote the mth
set of group-sparse variables as GSm. The modeler can
specify a set of variables to be considered for a nonlin-
ear transformation, and the algorithm generates trans-
formed versions of those variables. The default trans-
formations for variable x are x2, x1/2 and logx. We
denote the mth set of transformed variables by Tm.
Finally, if the modeler has subject expertise, she can
specify a set I of variables that must be included in the
model. Then the algorithm calculates kmax, the maxi-
mum possible subset size such that the selective spar-
sity and modeler expertise constraints are still feasible.
We construct a graph containing vertices correspond-
ing to each of the p potential variables and an edge
between nodes i, j such that (i, j) ∈ HC. Then a max-
imum independent set for this graph is a set such that
no two vertices are adjacent. The cardinality of this set
is exactly equal to kmax, and is the objective value of
the following MIO problem:

(6)

OBJ = max
z

p∑

i=1

zi

s.t. zi + zj ≤ 1 ∀(i, j) ∈ HC,

zi ∈ {0,1}, i = 1, . . . , p.

Since the graph contains at least one node, the op-
timal value OBJ is at least 1 and the algorithm pro-
ceeds to set kmax = min(OBJ,L), where L is the user’s
desired maximum number of covariates in the model.
Then it proceeds to determine a set of � values to
test. By default, the set is logarithmically spaced be-
tween 0 and 0.5

√
p. This maximum value of � would

likely force β = 0 if the problem were completely un-
constrained. At this point, the algorithm proceeds to
Stage 2.

3.2 Stage 2: The MINLO Model

The heart of the method is following MINLO prob-
lem. We describe the MINLO here and devote Sec-
tion 4.3 to explaining our techniques for solving it:

min
β,z

n∑

i=1

−yi

(
β ′xi + (−1)yi�‖β‖ α

α−1

)

+ log
(
1 + exp

(
β ′xi + (−1)yi�‖β‖ α

α−1

))
,

(7a)

s.t. z� ∈ {0,1}, � = 1, . . . , p,(7b)

−Mz� ≤ β� ≤ Mz�, � = 1, . . . , p,(7c)

p∑

�=1

z� ≤ k,(7d)

z1 = · · · = z�, (1, . . . , �) ∈ GSm ∀m,(7e)

zi + zj ≤ 1 ∀(i, j) ∈ HC,(7f)
∑

i∈Tm

zi ≤ 1 ∀m,(7g)

z� = 1 ∀� ∈ I,(7h)
∑

�∈Si

z� ≤ |Si | − 1 ∀S1, . . . ,Sj .(7i)

In the objective function (7b), the robustification pa-
rameter � immunizes the resulting model against struc-
tural uncertainty in the data. In Constraint (7a), a binary
indicator variable z� is introduced for every β� in the
model. For a large enough constant M, the constraint
(7c) ensures that β� will only be included in the model
if z� = 1. The constraint (7d) limits the number of to-
tal variables that will be included in the model. This
ensures general sparsity of the resulting model. The
constraints in (7e), (7f) and (7g) are selective sparsity
constraints. For the mth set of variables with a group
sparsity structure, the set of constraints defined in (7e)
ensures that the variables in GSm are either all zero,
or all nonzero. The set of constraints in (7f) ensure
that the resulting model is free from extreme pairwise
multicollinearity. The set Tm refers to the mth variable
which was flagged as a candidate for transformation
and all of its possible nonlinear transformations. The
set of constraints (7g) ensures that at most one of the
variables from the set Tm will be included in the final
model for each of the candidate variables m. If I �= ∅,
Constraint (7h) will be included in the model and will
ensure that each of the specified independent variables
appears in the final model. (7i) is a set of constraints to
exclude particular solutions Si , such as those with high
global multicollinearity or containing variables which
are statistically insignificant. Si is the set of indices
corresponding to nonzero β value in the ith solution.
The initial MINLO model will not contain line (7i);
these constraints will be generated in Stage 3, if neces-
sary.

The algorithm described in Section 4 is used to solve
Problem (7) for each value of k from 1 to kmax and
each value of � using the training data y and X. For
each problem solved, the output of the MINLO is a
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set of variables β∗ and z∗. We measure and record the
out-of-sample AUC on the validation set using this β∗.
Once the MINLO model is run for all potential values
of k and �, the algorithm chooses the three sets of β
with the highest AUC on the validation set as the top
three regression models, and proceeds to Stage 3.

3.3 Stage 3: Generating Additional Constraints

We denote the top three sets of β by S1,S2 and S3.
For each of the sets Si , the algorithm computes the sig-
nificance levels for each of the variables via bootstrap
methods. We note that our approach may be subject
to the post-model selection inference problem of in-
creased type 1 error, since the training data was used
both to generate a candidate set of models and to gen-
erate an empirical distribution for each coefficient es-
timate. Post-model selection inference without type 1
error is an area of current research (see, e.g., [4, 25,
40]). Remedies suggested in the literature include re-
serving some of the original data purely for inference,
or applying new theories of calculating and sizing con-
fidence intervals. These methods can be incorporated
within our approach.

Our algorithm also calculates the condition number
of the model for each of the sets Si .

If a set Si produces undesirable results—a condition
number higher than desired, or a model with insignifi-
cant variables—the algorithm generates Constraint (7i)
to exclude that set from the candidates of sets of best
regression models.

Excluding set Si can be achieved by “cutting off”
the corner from the binary hypercube formed by the z

variables using the constraint
∑

�∈Si
z� ≤ |Si | − 1. For

example, to exclude set S1 = {3,5,11}, we can insert
the constraint z3 + z5 + z11 ≤ 2 into Problem (7) and
resolve. The algorithm generates these additional con-
straints to exclude sets S1, . . . ,Sj as needed, and re-
turns to Stage 2. The modeler may set the maximum
condition number she will accept in the model, as well
as the number of iterations she will permit between
Stage 2 and Stage 3. The defaults are 30 and 3, respec-
tively. In our experience, if a logistic regression model
is a good fit for the data, few iterations are necessary.

When the algorithm ends, it presents the top three
models, along with their condition numbers and confi-
dence intervals of the bootstrapped coefficients.

Our MINLO approach can accommodate constraints
beyond those specified in Problem (7). Our formulation
assumes a robustified version of the traditional logistic
regression goal, which is to minimize negative log like-
lihood. However, any of the other robust approaches

to logistic regression mentioned in Section 2.3 could
be substituted. Residual diagnostics could also be in-
cluded, such as the calculation of Pearson residuals or
deviance residuals. These can help the modeler test the
validity of modeling using a logit function.

4. SOLVING THE MIXED INTEGER NONLINEAR
OPTIMIZATION PROBLEM

In this section, we present a brief overview of mixed
integer nonlinear optimization (MINLO) and explain
our methodology for solving Problem (7).

4.1 Mixed Integer Optimization Landscape

The general form of a Mixed Integer Optimization
(MIO) problem is as follows:

min h(α)

s.t. gj (α) ≤ 0 ∀j ∈ J,

αi ∈ {0,1} ∀i ∈ I,

αj ∈R ∀j /∈ I,

where R denotes the real numbers, the symbol ≤ de-
notes element-wise inequalities and we optimize over
α ∈ R

m containing both discrete (αi, i ∈ I) and contin-
uous (αi, i /∈ I) variables, with I ⊂ {1, . . . ,m}.

Types of MIO problems include mixed integer linear
optimization (MILO) problems (h, gj are linear func-
tions), mixed integer quadratic optimization (MIQO)
problems (h is quadratic, gj are linear functions), and
mixed integer nonlinear optimization (MINLO) prob-
lems (h and gj are continuously differentiable nonlin-
ear functions). When I = ∅, MILO problems reduce
to linear optimization (LO) problems, MIQO prob-
lems reduce to quadratic optimization (QO) problems,
and MINLO problems reduce to nonlinear optimiza-
tion (NLO) problems.

From 1991–2015, the overall speedup of MILO
solvers was a factor of 780,000 and of hardware was
a factor of 580,000, leading to an overall speedup of
approximately 450 billion. Problem (7) is a MINLO,
which is more challenging. However, we will make use
of MILO solvers in our approach to solve the MINLO
to optimality. MIO solvers provide both feasible solu-
tions as well as lower bounds to the optimal value. As
the MIO solver progresses toward the optimal solution,
the lower bounds improve and provide an increasingly
better guarantee of suboptimality, which is especially
useful if the MIO solver is stopped before reaching the
global optimum. In contrast, heuristic methods do not
provide such a certificate of suboptimality.
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The belief that MIO approaches to problems in
statistics are not practically relevant was formed in the
1970s and 1980s and it was at the time justified. Given
the astonishing speedup of MIO solvers and computer
hardware in the last twenty-five years, the mindset of
MIO as theoretically elegant but practically irrelevant
is no longer justified. In this paper, we provide empir-
ical evidence of this fact in the context of building a
high-quality logistic regression model.

Developing algorithms for solving convex MINLO
problems to provable optimality has been an active
area of research since the 1970s, and a wide variety
of MINLO solvers have been built based on these al-
gorithms. Such algorithms integrate techniques from
nonlinear optimization, integer optimization and linear
optimization. Typically, these algorithms rely on two
major solution techniques: (1) branch and bound with
nonlinear relaxations or (2) linear relaxations of h and
gj . For background on convex MINLO, see [11]. See
[13] for a complete categorization of twenty-four ex-
isting MINLO solvers.

4.2 Computational Tests on Existing MINLO
Solvers

In this section, we examine whether current state of
the art MINLO solvers are adequate for solving (2) and
(7) in order to assess the need to develop a specialized
solver.

We built six test problems. in order to compare
MINLO solver performance. xi ∼ N(0,�), i = 1, . . . ,

n were independent realizations from a p-dimensional
multivariate normal distribution with mean zero and
covariance matrix � := (σij ). The columns of the X
matrix were standardized such that the training set
had columns with zero mean and unit �2-norm. For
a fixed Xn×p , we generated the response y as fol-
lows: yi = Round(1/(1 + exp(−β ′xi + εi))), where

εi
i.i.d.∼ N(0, σ 2). We denote the number of nonzeros

in β by k. In particular, we took σij = ρ|i−j | for
i, j ∈ {1, . . . , p} × {1, . . . , p}. In our experiments, we
consider k = 5 and βi = 1 for i ∈ {1, . . . , p} such that
i mod p/k = 0 to generate k equally spaced values.

We restricted the first three of the test problems
to Problem (2). For the second three test problems,
we considered Problem (7) with general sparsity con-
straints, robustness in the objective function and pair-
wise multicollinearity constraints for any pair of co-
variates with correlation over 0.7. The exact parameters
(n,p,ρ) of each of the six test problems were as fol-
lows. Problem 1: (100, 10, 0.4), Problem 2 (1000, 100,
0.4), Problem 3: (2000, 200, 0.4), Problem 4: (100, 10,
0.8), Problem 5: (1000, 100, 0.8), Problem 6: (2000,
200, 0.8). All problems were tested with k = 5, σ = 2.

The NEOS server makes many optimization solvers
freely available for use on their servers [18, 20, 29]. By
using the NEOS server, we were able to test six differ-
ent solvers side by side using an AMPL interface The
server “neos-6,” where our computational experiments
were performed, has the following computational spec-
ifications: 2.2 GHz processor, 24 cores, 64 GB of RAM
and 2 TB of hard disk space. We tested all six solvers
for which an AMPL interface was available: Bonmin,
KNITRO, FilMINT, MINLP, SCIP and Couenne (see
[13] for details on these solvers). We did not change
the default options on any of the solvers.

Table 2 presents a comparison of times (in seconds)
for each solver to reach optimality on each test prob-
lem, up to a maximum cut off time of 7200 seconds
(2 hours). Note that we did not solve each test problem
for every value of k, but only for the value of k cor-
responding to the true value of k. Thus, the times pre-
sented are the solve times for a single instance of the
problem, averaged over five runs. We do not present

TABLE 2
MINLO solver comparison times (in seconds)

Solver Pr. 1 Pr. 2 Pr. 3 Pr. 4 Pr. 5 Pr. 6

Bonmin 11 168 2370 14 Failed Failed
KNITRO 16 29 145 0.42 6585 Failed
FilMINT 10 1283 633 Failed Failed Failed
MINLP 11 ≈300∗ ≈6000∗ 10 ≈6000∗ Failed
SCIP Cut off Cut off Cut off Cut off Cut off Cut off
Couenne Cut off Cut off Cut off Cut off Cut off Cut off

∗Note that the MINLP solver did not provide timestamps for solve times beyond 1 minute
so these are rounded times based on computer clock time.
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the time results with the goal of accurately benchmark-
ing the best time possible, but rather to give a sense
of generally expected solve times under the standard
conditions of operating on a shared server.

The solve times presented in Table 2 represent the
time to build and solve the problem. Thus, if we can
embed the solver within a optimization language such
that the problem does not have to rebuilt for successive
values of k, we can expect that subsequent re-solves for
additional values of k would be much faster. With this
in mind, the solve time of the first four solvers on the
NEOS server for Problem 1 may be efficient enough
for practical purposes to solve the best subset problem,
especially since p = 10 in Problem 1. However, the in-
creased complexity of Problems 2 and 3 indicated the
variability between solvers—and the inability to scale
effectively to problems of a typical size. Problems 4,
5 and 6 are more challenging, mainly due to the ad-
dition of robustness in the objective function. Indeed,
only three of the six available solvers were able to solve
Problem 4, and only two of the six were able to solve
Problem 5. None of the available solvers were able to
solve Problem 6. These challenges of scale and com-
plexity provided the motivation to create our own tai-
lored algorithm to solve Problem (7) efficiently.

4.3 Tailored Algorithm

We built a tailored algorithm to efficiently solve the
MINLO model (7). This consisted of two main in-
gredients: outer approximation methods and dynamic
constraint generation. In the special case where the
MINLO model only contains general sparsity con-
straints and the problem reduces to the best subset
problem in logistic regression, we add a third ingre-
dient: a discrete first-order heuristic.

4.4 Outer Approximation Methods

The outer approximation algorithm for convex
MINLO was introduced in [21]. The algorithm al-
ternates between solving a mixed integer linear opti-
mization problem and a pure nonlinear optimization
problem, where linearizations of the objective func-
tion around solutions to the NLO are added to the
MIO. These linearizations are obtained by the con-
vexity and differentiability of f : for any value of
β̂ ∈ R, the following linear inequality is valid: f (β) ≥
f (β̂) + ∇f (β̂)′(β − β̂).

In our case, the algorithm proceeds as follows. First,
Problem (1) is solved and has optimal solution βNLO.

The following MILO, which we call the reduced mas-
ter problem (RMP), is formed:

min
β

η

s.t. η ≥ f
(
βNLO) + ∇f

(
βNLO)′(

β − βNLO)

z� ∈ {0,1}, � = 1, . . . , p,

−Mz� ≤ β� ≤Mz�, � = 1, . . . , p,

p∑

�=1

z� ≤ k,

(8)
z1 = · · · = z� (1, . . . , �) ∈ GSm ∀m,

zi + zj ≤ 1 ∀(i, j) ∈HC,
∑

i∈Tm

zi ≤ 1 ∀m,

z� = 1 ∀� ∈ I,
∑

�∈Si

z� ≤ |Si | − 1 ∀S1, . . . ,Sj .

The reduced master problem (8) is solved. The sup-
port of the resulting solution, βRMP, is then fixed,
and the following nonlinear optimization problem is
solved:

(9)
min

β
f (β)

s.t. support(β) = support
(
βRMP)

.

The solution to Problem (9) is a new βNLO. Lin-
earizations around this new βNLO are added to the re-
duced master problem (8), and the algorithm contin-
ues to alternate between solving Problems (8) and (9).
At each stage, these cutting plane linearizations cut
off the current integer solution to Problem (8) un-
less the integer solution is optimal for Problem (7).
As the algorithm progresses, the reduced master prob-
lem (8) becomes an increasingly closer approximation
to Problem (7). The global minimum of Problem (7)
is reached when the objective function of the reduced
master problem (8) is within some pre-specified tol-
erance ε of the objective function of the NLO prob-
lem (9).

4.5 Dynamic Constraint Generation

We implement an efficient way to solve the reduced
master problem (8). In general, outer approximation
methods are known as “multi-tree” methods because
every time a linearization is added, the reduced master
problem (8) must be solved again. Over the course of
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the solution process, multiple branch and bound trees
are built in order to solve successive versions of the
reduced master problem (8). We implement a “single-
tree” way of solving Problem (8) by using dynamic
constraint generation, known in the optimization liter-
ature as lazy constraint callbacks, which dynamically
(or lazily) add cutting planes to the model whenever an
integer feasible solution is found. Unless the current
integer solution is optimal, this will refine the feasible
region of the problem by cutting off the current integer
solution.

Lazy constraint callbacks are a relatively new type
of callback. CPLEX 12.3 introduced lazy constraint
callbacks in 2010 and Gurobi 5.0 introduced lazy
constraints in 2012. To date, the only MIO solvers
which provide lazy constraint callback functional-
ity are CPLEX [33], Gurobi [34] and GLPK [26].
The outer approximation method for solving convex
MINLO does not require lazy constraint callbacks, but
if we do exploit their functionality, only one branch
and bound tree needs to be built. This saves the rework
of rebuilding a new branch and bound tree every time
a new integer feasible solution is found in Problem (8).

Lazy constraints are a fairly new feature within op-
timization solvers. Although many problems within
statistics are naturally formulated as MIO or MINLO
problems, to the best of our knowledge, we are the
first to integrate the optimization-based concept of lazy
constraints into the process of building a statistical
model.

4.6 A Discrete First-Order Heuristic for Best
Subset Selection

In the case where we are interested in Problem (2),
the classical best subset problem in logistic regression,
we add a third ingredient to our tailored algorithm:
a heuristic for solving (2) based on a discrete extension
of first-order methods in convex optimization.

We first developed this heuristic in [8] and repeat
the approach in the supplemental files for clarity. This
gives near-optimal solutions to Problem (2), and we in-
corporate this solution at the beginning of our tailored
algorithm by adding a linearization around the solu-
tion to Problem (9) with βRMP taken as the first-order
heuristic solution. By doing this in the very first step,
we ensure that a high-quality cutting plane is added im-
mediately to Problem (8), causing the outer approxima-
tion algorithm to converge much more quickly.

5. COMPUTATIONAL RESULTS

The computational tests in Section 5.1 were per-
formed on a computer with an Intel Xeon E5440
(2.8 GHz) processor with 8 cores and 32 GB of RAM
in order to fairly compare times with the NEOS server.
All other computational tests were performed on a
computer with an Intel Xeon E5687W (3.1 GHz)
processor, 16 cores and 128 GB of RAM. We used
Gurobi 6.0.0 [34] as the optimization solver,
and implemented the algorithm in Julia 0.3.3
[9], a technical computing language. We used JuMP
0.7.0 [41], an algebraic modeling language package
for Julia, to interface with Gurobi. We used the GLM-
Net 0.0.2 package in Julia to compute Lasso solu-
tions.

5.1 Time Comparision

We begin by comparing our algorithm’s performance
to the same set of six test problems from Section 4.2,
again averaging times over five trials (see Table 3).

In these trials, our tailored algorithm was uniformly
faster than the six optimization solvers we tested on
the NEOS server. Moreover, this speed comparison
indicates that our algorithm can scale to higher di-
mensional problems more easily than other existing
MINLO software, and can handle the increased chal-
lenges of solving Problems 4–6. Next, we compare
the performance of solving Problem (7) using MINLO
compared to heuristic methods. Again, we consider
problems restricted to general sparsity constraints, and
problems requiring other statistical properties as well.

5.2 Methodology Comparison—Best Subset

As indicated in Section 2.1, logistic regression with
an �1-penalty is the primary method for inducing spar-
sity in logistic regression models. In this section, we
compare our methodology for the best subset problem
with Lasso for logistic regression and report sparsity
and predictive performance. We measure predictive
performance using area under the ROC curve (AUC)
as our metric. Data was generated as per Section 4.2.

TABLE 3
MINLO solver comparison times (in seconds)

Solver Pr. 1 Pr. 2 Pr. 3 Pr. 4 Pr. 5 Pr. 6

OURS <1 15 16 <1 155 258

∗Note that the MINLP solver did not provide timestamps for solve
times beyond 1 minute so these are rounded times based on com-
puter clock time.
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FIG. 1. Series of computational tests for Problem 2 with n = 2000,p = 200. The left panel is ρ = 0, the middle panel is ρ = 0.4, and the
right panel is ρ = 0.8. The dashed line in the top panel represents the true number of nonzero values. Error bars represent standard errors.

Overdetermined regime. We begin by considering
the traditional overdetermined regime with n > p. Fig-
ure 1 shows a representative case within the overdeter-
mined regime with n = 2000 and p = 200. We note
that the MINLO approach and the Lasso approach per-
form almost identically with respect to AUC across
many different noise (σ ) and correlation (ρ) levels.
Where we notice a large difference between the two
methods is in the number of nonzero coefficients cho-
sen by the two methods. MINLO significantly outper-
forms Lasso in this respect. In this example, there are
five true nonzero coefficients. MINLO never selects
more than seven. Lasso selects far more variables to
enter the model, and is less consistent than MINLO:
we observe far greater standard error over the ten tri-
als.

High dimensional regime. Our method is applicable
both in the traditional overdetermined n > p regime
and in the increasingly common high dimensional un-
derdetermined n < p regime. The tailored approach of
using mixed integer optimization in conjunction with
warm starts and lazy constraint cutting planes gener-
ated by pure nonlinear optimization rapidly finds the
optimal solution.

However, in the n < p regime, we observe that the
lower bounds of the mixed integer optimization prob-
lem progress slowly, so while the optimal solution may

have been found, certification of optimality happens
slowly, if at all.

To address this, we follow the approach of [8]
and consider adding bounding box constraints to the
MINLO formulation. These constraints limit the search
space, and allow the solver to certify optimality within
the bounding box. In particular, we consider the fol-
lowing additional bounding box constraints to the re-
duced master problem (8):

β : ‖β − β0‖1 ≤ Lβ
�,loc,

where β0 is a candidate sparse solution. The radius of
the �1-ball above, that is, Lβ

�,loc, is a user-defined pa-
rameter which controls the size of the feasible set.

In our experiments, we ran our tailored algorithm
for 180 seconds, and used the resulting solution as β0.
We then generated the box constraint using Lβ

�,loc =
‖β0‖1/k. Figure 2 gives sparsity and predictive perfor-
mance results for an example in the high dimensional
regime with n = 400 and p = 1000.

We notice that in this example, Lasso frequently, but
not always, has slightly better predictive performance
than MINLO. Nevertheless, the number of nonzero co-
efficients chosen by Lasso are far higher than the num-
ber selected by MINLO. MINLO consistently chooses
a number of nonzeros in the neighborhood of the true
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FIG. 2. Series of computational tests for Problem 4 with n = 400,p = 1000. The left panel is ρ = 0, the middle panel is ρ = 0.4 and the
right panel is ρ = 0.8. The dashed line in the top panel represents the true number of nonzero values. Error bars represent standard errors.

number; the Lasso solution exhibits much higher stan-
dard error of the mean, and is usually 2–4 times the
true number of nonzeros.

These observations about predictive performance
and sparsity in the high dimensional regime are com-
mensurate with the remarks in [8] that Lasso is a ro-
bust method first and foremost, and a sparsity-inducing
method second. Even so, we doubt that the minor in-
crease in predictive performance that Lasso’s robust-
ness may induce is worth the tradeoff of introducing so
many variables into the model.

Extremely high dimensionality. The recent data ex-
plosion has led statisticians to face problems of ex-
tremely high dimensionality. One place where this
arises frequently is in the area of gene expression data.
To show that our approach is relevant in the extremely
high dimensional regime, we consider an example us-
ing data generated by the The Cancer Genome At-
las Research Network: http://cancergenome.nih.gov/.
Tumor formation is a result of dysfunctional proteins
and/or signaling network in cells. Often, tumor types
have distinct subtypes which each have their own ge-
netic signatures. Here, we will consider two different
subtypes of lung cancer: adenocarcinoma and squa-
mous cell carcinoma, and use best subset logistic re-
gression to identify which genes signal each of the two
subtypes.

The dataset we consider has gene expression data
for 992 patients, as well as a binary variable indicating
that patient’s cancer subtype (50.7% adenocarcinoma,
49.2% squamous cell). The original gene expression
data contained results for 30,373 genes. After remov-
ing all genes which had missing data for some patients,
we had a dataset with n = 992 and p = 13,937.

We divided the dataset into training, validation, and
test sets with the ratio of 50%, 25%, 25%. We ran
Lasso for logistic regression on the training set and,
using the model with the best validation set AUC, de-
termined a subset of important genes. We repeated this
approach ten times with different random splits of the
data in order to generate a full set of important genes:
this yielded 300 genes. The average AUC of the Lasso
model over the ten trials was 0.977 ± 0.02.

We used our tailored method on this reduced dataset
of 300 genes. Over ten trials, the MINLO approach
selected a total of 120 genes, with an average AUC
of 0.973 ± 0.01. The two subtypes are clinically dis-
similar, so even with such a high AUC, these models
are unlikely to be helpful for diagnosis. However, the
lower number of genes selected by MINLO may be
very helpful in identifying biomarkers that are essen-
tial for monitoring drug effects in clinical trials, and for
helping researchers understand cell signaling perturba-
tion in different tumor subtypes so as to direct drug
discovery and development efforts.

http://cancergenome.nih.gov/
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TABLE 4
Pairwise multicollinearity; n = 1000, p = 100, true K = 5, ρ = 0.9, �X = 0

MINLO Lasso

ρ σ �∗ K∗ TP AUC MC Con Time K∗ TP AUC MC Con

0.9 1 0.000 4.6 4.6 0.941 0.163 4.8 5606 23.9 5.0 0.938 0.904 84.6
0.000 0.2 0.2 0.003 0.007 1.3 470 5.7 0.0 0.002 0.002 21.5

0.9 2 0.000 4.8 4.4 0.839 0.223 2.4 4859 20.5 4.9 0.834 0.870 69.7
0.000 0.2 0.2 0.004 0.053 0.6 583 5.3 0.1 0.006 0.019 21.7

0.9 5 0.001 4.8 2.6 0.658 0.296 1.7 4778 27.2 3.8 0.658 0.824 109.1
0.000 0.3 0.3 0.004 0.064 0.4 462 8.8 0.3 0.005 0.077 44.7

5.3 Methodology Comparison—Full Algorithmic
Approach

Our main goals of the algorithmic approach to logis-
tic regression are to achieve interpretability and robust-
ness, while retaining predictive power.

First, we present results in Tables 4 and 5 for syn-
thetic datasets for the default parameters of the algo-
rithm: five values of � tested and 0.7 as the maxi-
mum pairwise correlation allowed. These are designed
to illustrate the algorithmic’s approach ability to han-
dle datasets with high multicollinearity and to be robust
against added noise. Then we tested our algorithm on
five publicly-available real datasets and present these
results in Table 6. Finally, we consider a combined syn-
thetic example designed to demonstrate the capacity of
the algorithmic approach to identify various properties
when presented in concert. Note that in all cases, all
variables selected by the algorithmic approach are sig-
nificant at the 0.05 level.

Preliminaries. Each experiment corresponds to two
rows in a table. The top row presents average results
over ten trials of the same experiment and the bot-
tom row presents the standard error. We use the fol-
lowing notation: K∗ = value of k chosen by the algo-

rithm, TP = number of true nonzero variables identi-
fied by the algorithm, for the synthetic datasets, MC =
the maximum pairwise correlation present in the fi-
nal model and Con = condition number. Time for
the MINLO algorithm is presented in seconds, and is
not meant to accurately benchmark the best possible
time but to show that it is computationally tractable
to solve these problems in a practical amount of time
on standard computers. The real datasets were obtained
from [2]. We abbreviate each real dataset’s name as fol-
lows: “Bank” stands for the Banknote Authentication
dataset; “Telescope” corresponds to the Magic Gamma
Telescope dataset; “Mass” stands for the Mammo-
graphic Mass dataset; “Ozone 8” corresponds to the
Ozone Detection Level Eight dataset; and “Ozone 1”
stands for the Ozone Detection Level One dataset. We
aim to return solutions in practical amounts of time, so
we imposed a 60-second time limit on each optimiza-
tion problem solved. Often optimality is reached be-
fore the time limit. Note that for each dataset, Kmax ×
(# of values of � tested) × (# of iterations of Stage 3)

MINLO problems are solved.

Results. Table 4 shows results for synthetic logistic
regression datasets with high pairwise multicollinear-
ity. We observe that the MINLO model achieves the

TABLE 5
Robustness; n = 1000, p = 100, true K = 5, ρ = 0, �X ∼ Uniform(0,2)

MINLO Lasso

ρ σ �∗ K∗ TP AUC MC Con Time K∗ TP AUC MC Con

0 1 0.0000 5.1 5.0 0.873 0.057 1.2 1196 27.5 5.0 0.867 0.088 1.8
0.0000 0.1 0.0 0.004 0.005 0.0 26 7.3 0.0 0.005 0.007 0.2

0 2 0.0002 5.2 5.0 0.793 0.059 1.2 989 19.9 5.0 0.788 0.088 1.6
0.0001 0.2 0.0 0.007 0.004 0.0 29 5.4 0.0 0.008 0.009 0.1

0 5 0.0000 5.3 4.8 0.655 0.064 1.2 1027 17.4 5.0 0.641 0.091 1.6
0.0000 0.2 0.1 0.007 0.005 0.0 14 4.6 0.0 0.008 0.005 0.1
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TABLE 6
Results for real datasets

MINLO Lasso

Dataset n p K∗ AUC MC Con Time K∗ AUC MC Con

Bank 686 4 2.9 0.956 0.360 3.8 4.1 3.9 0.994 0.783 12.1
0.1 0.002 0.011 0.2 1.0 0.1 0.000 0.003 0.4

Telescope 9510 10 4.8 0.832 0.668 7.2 1145.3 3.2 0.822 0.272 2.7
0.2 0.002 0.027 0.8 166.0 0.2 0.002 0.068 0.8

Mass 415 10 4.8 0.875 0.406 6.3 24.0 6.2 0.873 0.434 9.5
0.6 0.007 0.016 1.3 3.8 0.8 0.006 0.019 2.3

Ozone 8 924 72 3.1 0.869 0.283 2.6 1583.1 38.1 0.895 0.982 9293.8
0.3 0.005 0.047 0.4 271.2 3.6 0.007 0.010 2827.0

Ozone 1 924 72 6.5 0.885 0.644 20.0 725.5 38.9 0.888 0.984 12,283.9
0.8 0.013 0.026 4.9 122.9 4.8 0.016 0.010 4869.6

same, or slightly higher, AUC than Lasso. The MINLO
model performs better in terms of sparsity, however,
as noise increases, this is at the expense of recovering
the true set of nonzero coefficients. However, the fi-
nal Lasso models contain very high pairwise collinear-
ity and condition numbers that indicate severe multi-
collinearity issues.

Table 5 shows results for datasets designed to il-
lustrate robustness. The MINLO model achieves very
slightly better predictive power than the Lasso model.
In the highest noise setting (σ = 5), MINLO does
not always fully recover the true set of nonzero co-
efficients. Nevertheless, the proportion of coefficients
selected that are truly nonzero remains quite high
on average (4.8/5.3 = 90.6%) compared to Lasso
(5.0/17.4 = 28.7%).

We tested our algorithm on five publicly-available
real datasets and present these results in Table 6. Note
that n here indicates the size of the training dataset—
the original dataset has 2n observations.

In the Banknote Authentication dataset, MINLO
achieves slightly better sparsity, but slightly worse
AUC; this is the price of interpretability, since with
a threshold of 0.7 as the maximum pairwise correla-
tion, the MINLO model cannot include as many vari-
ables as the Lasso model. In the Magic Gamma Tele-
scope dataset, however, we see the opposite result:
Lasso outperforms MINLO with respect to sparsity,
at the expense of AUC. MINLO achieves a slightly
higher AUC within the bounds of a 0.7 maximum pair-
wise correlation limit. It is not surprising that the al-
gorithmic approach trades off the desirable properties
of low multicollinearity, sparsity and predictive perfor-
mance in different ways for different datasets. In fact,

what we can be assured of is that the MINLO model
trades these properties off in an optimal way given the
constraints the modeler specifies. It is likely that if a
lower maximum correlation threshold were given, the
Magic Gamma Telescope results would show a lower
K∗ selected—but possibly a lower test set AUC as
well. We verified this intuition by running the Magic
Gamma Telescope dataset again with a maximum pair-
wise correlation threshold of 0.5—results are in Ta-
ble 7. Likewise, were a higher maximum correlation
threshold specified, it is likely that the Banknote Au-
thentication test set AUC would match Lasso’s—but
with a higher pairwise correlation, and higher con-
dition number. The Mammographic Mass dataset is
an example where the MINLO approach outperforms
Lasso on all levels: a lower K∗ selected, higher test
set AUC, and lower maximum correlation and condi-
tion number. The Ozone Detection datasets both have
a much greater number of potential variables than the
other three datasets. As we have come to expect in such
cases, the MINLO model significantly outperforms
Lasso with respect to sparsity here. Predictive perfor-
mance is similar, although slightly lower in the MINLO
case. However, the resulting maximum collinearity is
drastically improved in the MINLO model.

Finally, we consider a combined synthetic exam-
ple which we created in order to test the algorithm’s
ability to identify many properties when presented to-
gether. Specifically, we consider an example whose
structure incorporates general sparsity, selective spar-
sity in terms of both high pairwise multicollinearity
and group sparsity, and modeler expertise in a sin-
gle dataset. We test this example in the case where
n = 2000 and p = 200.
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TABLE 7
Magic Gamma Telescope results with maximum pairwise correlation threshold of 0.5

MINLO Lasso

K∗ AUC MC Con Time K∗ AUC MC Con

3.3 0.815 0.232 1.9 128.8 3.0 0.819 0.184 1.6
0.2 0.002 0.029 0.2 17.0 0.0 0.003 0.002 0.0

We generated a synthetic data matrix X for n =
2000,p = 100 according to the process outlined pre-
viously. We used a value of ρ = 0.9 to ensure that
there is high pairwise multicollinearity present be-
tween some columns of X, and σ = 5 to ensure high
noise. To generate nonlinear transformations, for each
column j of X we included an additional column con-
sisting of the squared entries of j , bringing the to-
tal number of potential covariates up to 1000. We
consider k = 10. However, we generated βi = 1 so
that 7 positive values occurred in the original 100
columns and 3 were located in the 100 transformed
columns. The response y was generated as before as

yi = Round(1/(1 + exp(−β ′xi + εi))), where εi
i.i.d.∼

N(0, σ 2). To test our robustness to error in data, we
generated a matrix �X ∼ Unif(0,2) and considered
X + �X. We assume the modeler has some expertise
with this sort of data, and knows one of the values
of i such that βi is truly nonzero. Finally, the mod-
eler is also aware of a group sparsity structure and
knows that βa,βb,βc and βd are all either all zero or
all nonzero and that βe,βf ,βg , and βh are either all
zero or all nonzero, where {a, b, c, d} ∈ {i | βi = 1} and
{e, f, g,h} ∈ {i | βi = 0}.

Table 8 presents results for this combined example.
As before, the top row presents average results over
five trials of the same experiment and the bottom row
presents the standard error.

In this combined example, we see that MINLO pro-
duces a much lower total number of variables and
lower pairwise multicollinearity and condition num-
ber while maintaining a similar test set AUC to the

Lasso model. Although the true positive rate is lower
for MINLO than Lasso in this challenging case, the
precision (ratio of number of true positives chosen to
total number of variables chosen) is much higher for
MINLO.

The general pattern that these computational exper-
iments of our algorithmic approach to logistic regres-
sion is that MINLO and Lasso typically exhibit very
similar predictive performance. However, MINLO is
frequently able to reduce the number of variables se-
lected and/or reduce the multicollinearity in the model.
The balance between these properties depends on the
modeler’s own input to the MINLO model.

5.4 Generality of Proposed Approach

We have thus far limited ourselves to synthetic
datasets generated as per Section 4.2, and compared
our results to Lasso. In practice, data could be gener-
ated in any number of ways, and results could be tested
against any number of alternative algorithms.

We demonstrate the generality of our proposed ap-
proach in this section in two ways. First, we consider
synthetic data generated as in Section 4.2, with the im-
portant distinction that we consider generating the data
with nonzero coefficients which do not have equal ab-
solute value. The equal absolute value setting is rare
in practice, so showing that our methodology performs
well in the unequal setting is critical.

Second, we consider alternative algorithms to Lasso.
Lasso has often been criticized for selecting only mod-
erately sparse solutions. Other heuristics may give

TABLE 8
Results for combined example

MINLO Lasso

�∗ K∗ TP AUC MC Con Time K∗ TP AUC MC Con

0.0004 11.2 6.2 0.76 0.56 5.9 1761.3 64.2 9.2 0.77 0.71 32.7
0.0002 0.6 0.6 0.00 0.03 0.5 40.9 6.9 0.3 0.00 0.00 1.1
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TABLE 9
Unequal predictor coefficients—best subset problem

MINLO Lasso

n p ρ σ SNR K∗ AUC Time K∗ AUC

2000 200 0.4 2 1.12 6.10 0.909 539 19.2 0.910
0.67 0.003 11.0 8.47 0.002

400 1000 0.4 5 0.45 8.30 0.689 4301 28 0.703
0.83 0.019 60.6 5.02 0.013

sparser solutions while retaining comparable predictive
power. Indeed, there are a suite of two-stage methods
which use Lasso as one component of a sparse selec-
tion algorithm: for example, forward stepwise or for-
ward stagewise logistic regression on the Lasso vari-
ables, adaptive lasso for logistic regression, and the
Lasso MLE hybrid.

We expect most practitioners will turn to simpler
heuristics like Lasso, since code for performing Lasso
logistic regression is readily available and the method
is well known. Nevertheless, we consider it important
to test our method against other state-of-the-art algo-
rithms, so in this section we test adaptive Lasso and
display the results.

These tests aim to show that our method is widely
applicable to a variety of input data and compares fa-
vorably to modern algorithms for inducing sparsity in
logistic regression models.

Unequal predictor coefficients. We generated data
according to Section 4.2 with k = 5 and βi ∈ {−1,2,

0.5,−2,1.5} for i ∈ {1, . . . , p} such that i mod p/k =
0 to generate k equally spaced values.

Table 9 shows sample results for the pure subset se-
lection problem using this set of true β values for both
the overdetermined regime and the high-dimensional
regime. Table 10 shows sample results for our full al-
gorithmic approach using this set of true β values.

The experiments in Table 10 corresponds to the ro-
bustness and pairwise multicollinearity studies, respec-
tively, from Section 5.3. Table notation and formatting
is as in Section 5.3.

Adaptive Lasso. Adaptive Lasso was introduced in
[55]. In this modification of Lasso, adaptive weights
are used for penalizing the coefficients. When consid-
ering testing algorithms which are enhancements to
Lasso, we choose to focus on adaptive Lasso for logis-
tic regression since adaptive Lasso can be solved with a
straightforward modification of the algorithm for solv-
ing the Lasso. Other techniques, be they modifications
of Lasso or entirely different, do not have readily avail-
able code available for logistic regression.

We include a brief comparison of adaptive Lasso and
Lasso performance on datasets generated according to
Section 4.2. We also test the unequal coefficient case
of the previous subsection. As before, k = 5 in these
experiments (see Table 11).

In general, adaptive Lasso produces models with
equivalent predictive power to Lasso which are sparser.
We note that the degree to which the models are sparser
is higher in the case where we test basic over- and
under-determined data. When we introduce uniform
random noise (as for our robustness tests) or high
pairwise multicollinearity, the adaptive Lasso does not
have quite as much of an edge on Lasso.

TABLE 10
Unequal predictor coefficients—full algorithmic approach

MINLO Lasso

ρ σ �X �∗ K∗ TP AUC MC Con Time K∗ TP AUC MC Con

0.4 2 2 0 4.9 2 0.850 0.100 1.303 1561 30.4 2 0.850 0.314 3.412
0 0.3 0 0.005 0.030 0.091 135 7.18 0 0.006 0.031 0.415

0.9 2 0 0 4.2 1.8 0.885 0.205 2.066 3524 20.3 2 0.887 0.853 73.4
0 0.3 0.1 0.005 0.057 0.635 563 5.70 0 0.005 0.029 27.4
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TABLE 11
Adaptive Lasso

Adaptive Lasso Lasso

Case n p ρ �X σ SNR K∗ AUC K∗ AUC

Overdetermined regime with 2000 200 0.4 0 2 1.12 26.90 0.841 22 0.842
Equal predictor coefficients 0 0 0 0 0 0 7.49 0.004 6.8 0.00
Underdetermined regime with 400 1000 0.4 0 5 0.45 56.70 0.582 88 0.583
Equal predictor coefficients 0 0 0 0 0 0 19.95 0.012 28.1 0.02
Overdetermined regime with 2000 200 0.4 0 2 1.12 13.60 0.911 33 0.910
Unequal predictor coefficients 0 0 0 0 0 0 4.75 0.002 8.9 0.00
Underdetermined regime 400 1000 0.4 0 5 0.45 14.10 0.710 42 0.696
Unequal predictor coefficients 0 0 0 0 0 0 6.33 0.013 24.6 0.02
Robustness with 1000 100 0.4 2 2 1.12 13.10 0.793 23 0.792
Equal predictor coefficients 0 0 0 0 0 0 3.42 0.006 5.4 0.01
Multicollinearity with 1000 100 0.9 0 2 1.23 22.00 0.845 21 0.844
Equal predictor coefficients 0 0 0 0 0 0 7.04 0.005 7.1 0.01
Robustness with 1000 100 0.4 2 2 1.12 19.50 0.836 22 0.834
Unequal predictor coefficients 0 0 0 0 0 0 4.85 0.003 6.6 0.00
Multicollinearity with 1000 100 0.9 0 2 1.23 11.90 0.883 17 0.884
Unequal predictor coefficients 0 0 0 0 0 0 2.48 0.005 3.7 0.00

Nevertheless, adaptive Lasso does not outperform
MINLO methods, either in the pure subset selection
case or the full algorithmic approach. See Sections 5.2
and 5.3 for corresponding MINLO results.

6. CONCLUSION

In this paper, we have developed a framework for
creating logistic regression models with a wide vari-
ety of statistical properties. The core of this methodol-
ogy is a MINLO model, and we develop a tailored al-
gorithm to solve this challenging MINLO. This is the
first algorithm that we are aware of to make use of call-
backs within optimization software to solve a statisti-
cal problem. We have demonstrated that our algorithm
converges to the optimal solution in faster times than
existing off-the-shelf MINLO software.

Our approach is competitive with existing sparsity-
inducing heuristics for logistic regression, namely,
Lasso, with respect to predictive performance. More-
over, it frequently outperforms Lasso with respect to
sparsity detection, and can guarantee many other de-
sirable qualities in the model. We have demonstrated
the effectiveness of this approach on real and synthetic
datasets in producing high-quality logistic regression
models within reasonable time frames.

SUPPLEMENTARY MATERIAL

Supplement to “Logistic Regression: From Art to
Science” (DOI: 10.1214/16-STS602SUPP; .pdf).
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